- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Blackport, Russell (2)
-
Screen, James A (2)
-
Audette, Alexandre (1)
-
Ceppi, Paulo (1)
-
Clement, Amy C (1)
-
Deser, Clara (1)
-
England, Mark (1)
-
Feldl, Nicole (1)
-
Fischer, Erich (1)
-
Gervais, Melissa (1)
-
Grise, Kevin M (1)
-
Hay, Stephanie (1)
-
Kang, Joonsuk M (1)
-
Kushner, Paul J (1)
-
Liang, Yu-Chiao (1)
-
Msadek, Rym (1)
-
Mudhar, Regan (1)
-
Pendergrass, Angeline G (1)
-
Po-Chedley, Stephen (1)
-
Shaw, Tiffany A (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Human-induced warming is amplified in the Arctic, but its causes and consequences are not precisely known. Here, we review scientific advances facilitated by the Polar Amplification Model Intercomparison Project. Surface heat flux changes and feedbacks triggered by sea-ice loss are critical to explain the magnitude and seasonality of Arctic amplification. Tropospheric responses to Arctic sea-ice loss that are robust across models and separable from internal variability have been revealed, including local warming and moistening, equatorward shifts of the jet stream and storm track in the North Atlantic, and fewer and milder cold extremes over North America. Whilst generally small compared to simulated internal variability, the response to Arctic sea-ice loss comprises a non-negligible contribution to projected climate change. For example, Arctic sea-ice loss is essential to explain projected North Atlantic jet trends and their uncertainty. Model diversity in the simulated responses has provided pathways to observationally constrain the real-world response.more » « lessFree, publicly-accessible full text available December 6, 2026
-
Simpson, Isla R; Shaw, Tiffany A; Ceppi, Paulo; Clement, Amy C; Fischer, Erich; Grise, Kevin M; Pendergrass, Angeline G; Screen, James A; Wills, Robert_C J; Woollings, Tim; et al (, Science Advances)Anthropogenically forced climate change signals are emerging from the noise of internal variability in observations, and the impacts on society are growing. For decades, Climate or Earth System Models have been predicting how these climate change signals will unfold. While challenges remain, given the growing forced trends and the lengthening observational record, the climate science community is now in a position to confront the signals, as represented by historical trends, in models with observations. This review covers the state of the science on the ability of models to represent historical trends in the climate system. It also outlines robust procedures that should be used when comparing modeled and observed trends and how to move beyond quantification into understanding. Finally, this review discusses cutting-edge methods for identifying sources of discrepancies and the importance of future confrontations.more » « lessFree, publicly-accessible full text available March 14, 2026
An official website of the United States government
